Range-v3
Range algorithms, views, and actions for the Standard Library
Transformation

Description

Transformation algorithms.

Modules

 lazy
 

Typedefs

template<typename List , typename State , typename Fun >
using meta::accumulate = fold< List, State, Fun >
 An alias for meta::fold. More...
 
template<typename ListOfLists >
using meta::cartesian_product = reverse_fold< ListOfLists, list< list<> >, quote_trait< detail::cartesian_product_fn > >
 Given a list of lists ListOfLists, return a new list of lists that is the Cartesian Product. Like the sequence function from the Haskell Prelude. More...
 
template<typename... Lists>
using meta::concat = _t< detail::concat_< Lists... > >
 Concatenates several lists into a single list. More...
 
template<typename List , typename N >
using meta::drop = _t< detail::drop_< List, N > >
 Return a new meta::list by removing the first N elements from List. More...
 
template<typename List , std::size_t N>
using meta::drop_c = _t< detail::drop_< List, meta::size_t< N > >>
 Return a new meta::list by removing the first N elements from List. More...
 
template<typename List , typename Pred >
using meta::filter = join< transform< List, detail::filter_< Pred > >>
 Returns a new meta::list where only those elements of List that satisfy the Callable Pred such that invoke<Pred,A>::value is true are present. That is, those elements that don't satisfy the Pred are "removed". More...
 
template<typename List , typename State , typename Fun >
using meta::fold = _t< detail::fold_< List, id< State >, Fun > >
 Return a new meta::list constructed by doing a left fold of the list List using binary Callable Fun and initial state State. That is, the State_N for the list element A_N is computed by Fun(State_N-1, A_N) -> State_N. More...
 
template<typename ListOfLists >
using meta::join = apply< quote< concat >, ListOfLists >
 Joins a list of lists into a single list. More...
 
template<typename List , typename Pred >
using meta::partition = fold< List, pair< list<>, list<> >, detail::partition_< Pred > >
 Returns a pair of lists, where the elements of List that satisfy the Callable Pred such that invoke<Pred,A>::value is true are present in the first list and the rest are in the second. More...
 
template<typename List >
using meta::pop_front = _t< detail::pop_front_< List > >
 Return a new meta::list by removing the first element from the front of List. More...
 
template<typename List , typename T >
using meta::push_back = _t< detail::push_back_< List, T > >
 Return a new meta::list by adding the element T to the back of List. More...
 
template<typename List , typename T >
using meta::push_front = _t< detail::push_front_< List, T > >
 Return a new meta::list by adding the element T to the front of List. More...
 
template<typename List , typename T , typename U >
using meta::replace = _t< detail::replace_< List, T, U > >
 Return a new meta::list where all instances of type T have been replaced with U. More...
 
template<typename List , typename C , typename U >
using meta::replace_if = _t< detail::replace_if_< List, C, U > >
 Return a new meta::list where all elements A of the list List for which invoke<C,A>::value is true have been replaced with U. More...
 
template<typename List >
using meta::reverse = _t< detail::reverse_< List > >
 Return a new meta::list by reversing the elements in the list List. More...
 
template<typename List , typename State , typename Fun >
using meta::reverse_fold = _t< detail::reverse_fold_< List, State, Fun > >
 Return a new meta::list constructed by doing a right fold of the list List using binary Callable Fun and initial state State. That is, the State_N for the list element A_N is computed by Fun(A_N, State_N+1) -> State_N. More...
 
template<typename List , typename Pred >
using meta::sort = _t< detail::sort_< List, Pred > >
 Return a new meta::list that is sorted according to Callable predicate Pred. More...
 
template<typename... Args>
using meta::transform = _t< detail::transform_< list< Args... > >>
 Return a new meta::list constructed by transforming all the elements in List with the unary Callable Fun. transform can also be called with two lists of the same length and a binary Callable, in which case it returns a new list constructed with the results of calling Fun with each element in the lists, pairwise. More...
 
template<typename ListOfLists >
using meta::transpose = fold< ListOfLists, repeat_n< size< front< ListOfLists > >, list<> >, bind_back< quote< transform >, quote< push_back > >>
 Given a list of lists of types ListOfLists, transpose the elements from the lists. More...
 
template<typename List >
using meta::unique = fold< List, list<>, quote_trait< detail::insert_back_ > >
 Return a new meta::list where all duplicate elements have been removed. More...
 
template<typename ListOfLists >
using meta::zip = transpose< ListOfLists >
 Given a list of lists of types ListOfLists, construct a new list by grouping the elements from the lists pairwise into meta::lists. More...
 
template<typename Fun , typename ListOfLists >
using meta::zip_with = transform< transpose< ListOfLists >, uncurry< Fun > >
 Given a list of lists of types ListOfLists and a Callable Fun, construct a new list by calling Fun with the elements from the lists pairwise. More...
 

Typedef Documentation

◆ accumulate

template<typename List , typename State , typename Fun >
using meta::accumulate = typedef fold<List, State, Fun>

#include <meta/meta.hpp>

An alias for meta::fold.

Complexity
$ O(N) $.

◆ cartesian_product

template<typename ListOfLists >
using meta::cartesian_product = typedef reverse_fold<ListOfLists, list<list<> >, quote_trait<detail::cartesian_product_fn> >

#include <meta/meta.hpp>

Given a list of lists ListOfLists, return a new list of lists that is the Cartesian Product. Like the sequence function from the Haskell Prelude.

Complexity
$ O(N \times M) $, where $ N $ is the size of the outer list, and $ M $ is the size of the inner lists.

◆ concat

template<typename... Lists>
using meta::concat = typedef _t<detail::concat_<Lists...> >
related

#include <meta/meta.hpp>

Concatenates several lists into a single list.

Precondition
The parameters must all be instantiations of meta::list.
Complexity
$ O(L) $ where $ L $ is the number of lists in the list of lists.

◆ drop

template<typename List , typename N >
using meta::drop = typedef _t<detail::drop_<List, N> >
related

#include <meta/meta.hpp>

Return a new meta::list by removing the first N elements from List.

Complexity
$ O(1) $.

◆ drop_c

template<typename List , std::size_t N>
using meta::drop_c = typedef _t<detail::drop_<List, meta::size_t<N> >>

#include <meta/meta.hpp>

Return a new meta::list by removing the first N elements from List.

Complexity
$ O(1) $.

◆ filter

template<typename List , typename Pred >
using meta::filter = typedef join<transform<List, detail::filter_<Pred> >>
related

#include <meta/meta.hpp>

Returns a new meta::list where only those elements of List that satisfy the Callable Pred such that invoke<Pred,A>::value is true are present. That is, those elements that don't satisfy the Pred are "removed".

Complexity
$ O(N) $.

◆ fold

template<typename List , typename State , typename Fun >
using meta::fold = typedef _t<detail::fold_<List, id<State>, Fun> >

#include <meta/meta.hpp>

Return a new meta::list constructed by doing a left fold of the list List using binary Callable Fun and initial state State. That is, the State_N for the list element A_N is computed by Fun(State_N-1, A_N) -> State_N.

Complexity
$ O(N) $.

◆ join

template<typename ListOfLists >
using meta::join = typedef apply<quote<concat>, ListOfLists>
related

#include <meta/meta.hpp>

Joins a list of lists into a single list.

Precondition
The parameter must be an instantiation of meta::list<T...> where each T is itself an instantiation of meta::list.
Complexity
$ O(L) $ where $ L $ is the number of lists in the list of lists.

◆ partition

template<typename List , typename Pred >
using meta::partition = typedef fold<List, pair<list<>, list<> >, detail::partition_<Pred> >

#include <meta/meta.hpp>

Returns a pair of lists, where the elements of List that satisfy the Callable Pred such that invoke<Pred,A>::value is true are present in the first list and the rest are in the second.

Complexity
$ O(N) $.

◆ pop_front

template<typename List >
using meta::pop_front = typedef _t<detail::pop_front_<List> >

#include <meta/meta.hpp>

Return a new meta::list by removing the first element from the front of List.

Complexity
$ O(1) $.

◆ push_back

template<typename List , typename T >
using meta::push_back = typedef _t<detail::push_back_<List, T> >

#include <meta/meta.hpp>

Return a new meta::list by adding the element T to the back of List.

Complexity
$ O(1) $.
Note
pop_back not provided because it cannot be made to meet the complexity guarantees one would expect.

◆ push_front

template<typename List , typename T >
using meta::push_front = typedef _t<detail::push_front_<List, T> >

#include <meta/meta.hpp>

Return a new meta::list by adding the element T to the front of List.

Complexity
$ O(1) $.

◆ replace

template<typename List , typename T , typename U >
using meta::replace = typedef _t<detail::replace_<List, T, U> >
related

#include <meta/meta.hpp>

Return a new meta::list where all instances of type T have been replaced with U.

Complexity
$ O(N) $.

◆ replace_if

template<typename List , typename C , typename U >
using meta::replace_if = typedef _t<detail::replace_if_<List, C, U> >
related

#include <meta/meta.hpp>

Return a new meta::list where all elements A of the list List for which invoke<C,A>::value is true have been replaced with U.

Complexity
$ O(N) $.

◆ reverse

template<typename List >
using meta::reverse = typedef _t<detail::reverse_<List> >
related

#include <meta/meta.hpp>

Return a new meta::list by reversing the elements in the list List.

Complexity
$ O(N) $.

◆ reverse_fold

template<typename List , typename State , typename Fun >
using meta::reverse_fold = typedef _t<detail::reverse_fold_<List, State, Fun> >

#include <meta/meta.hpp>

Return a new meta::list constructed by doing a right fold of the list List using binary Callable Fun and initial state State. That is, the State_N for the list element A_N is computed by Fun(A_N, State_N+1) -> State_N.

Complexity
$ O(N) $.

◆ sort

template<typename List , typename Pred >
using meta::sort = typedef _t<detail::sort_<List, Pred> >
related

#include <meta/meta.hpp>

Return a new meta::list that is sorted according to Callable predicate Pred.

Complexity
Expected: $ O(N log N) $ Worst case: $ O(N^2) $.
using L0 = list<char[5], char[3], char[2], char[6], char[1], char[5], char[10]>;
static_assert(std::is_same<L1, list<char[1], char[2], char[3], char[5], char[5], char[6], char[10]>>::value, "");

◆ transform

template<typename... Args>
using meta::transform = typedef _t<detail::transform_<list<Args...> >>
related

#include <meta/meta.hpp>

Return a new meta::list constructed by transforming all the elements in List with the unary Callable Fun. transform can also be called with two lists of the same length and a binary Callable, in which case it returns a new list constructed with the results of calling Fun with each element in the lists, pairwise.

Complexity
$ O(N) $.

◆ transpose

template<typename ListOfLists >
using meta::transpose = typedef fold<ListOfLists, repeat_n<size<front<ListOfLists> >, list<> >, bind_back<quote<transform>, quote<push_back> >>

#include <meta/meta.hpp>

Given a list of lists of types ListOfLists, transpose the elements from the lists.

Complexity
$ O(N \times M) $, where $ N $ is the size of the outer list, and $ M $ is the size of the inner lists.

◆ unique

template<typename List >
using meta::unique = typedef fold<List, list<>, quote_trait<detail::insert_back_> >
related

#include <meta/meta.hpp>

Return a new meta::list where all duplicate elements have been removed.

Complexity
$ O(N^2) $.

◆ zip

template<typename ListOfLists >
using meta::zip = typedef transpose<ListOfLists>
related

#include <meta/meta.hpp>

Given a list of lists of types ListOfLists, construct a new list by grouping the elements from the lists pairwise into meta::lists.

Complexity
$ O(N \times M) $, where $ N $ is the size of the outer list, and $ M $ is the size of the inner lists.

◆ zip_with

template<typename Fun , typename ListOfLists >
using meta::zip_with = typedef transform<transpose<ListOfLists>, uncurry<Fun> >
related

#include <meta/meta.hpp>

Given a list of lists of types ListOfLists and a Callable Fun, construct a new list by calling Fun with the elements from the lists pairwise.

Complexity
$ O(N \times M) $, where $ N $ is the size of the outer list, and $ M $ is the size of the inner lists.