A Gentle Introduction to Ranges v3

Say Goodbye to STL the Way You (Probably Dont) Know It

https://pem-aachen.de (++ User Group Aachen 2018 © 2018 Markus Werle (github linkedin) 1/44

https://pem-aachen.de/
http://github.com/daixtrose
https://www.linkedin.com/in/markus-werle-04305a12a/

Hints

= You can download this talk and code
samples in the form of unit tests

= https://github.com/daixtrose/gentle-
intro-to-ranges
= Published under MIT licence

= Code for talk framework based on
remark.js was stolen from Kirk Shoop's
Intro to RxCpp

= Please contribute fixes or file an issue if
you find errors or know about
Improvements.

2/44

https://github.com/daixtrose/gentle-intro-to-ranges
https://github.com/kirkshoop/introductionToRxcpp
https://github.com/daixtrose/gentle-intro-to-ranges/issues

Disclaimer

= This is not "The Complete Guide", but

= just a gentle introduction

= g user's view (sic!) on ranges

= focus is more on getting the basic ideas
(tutorial)

3/ 44

Our Starting Point: STL

STL is the recommended C++ way to deal with sets
and operations on sets

= Provides Containers E W@CUV@ STL

= Provides Algorithms

50 Specific Ways to Improve

= Provides Utilities Your Use of the Standard
= STLis generic Template Library
= STL makes no compromise: performance first Scott Meyers

STl requires educated users

Hint: | am a great fan of the STL and encourage(d) its
usage wherever possible.

2=
O
=
wn
O
?_’
-
=
m
wn
=
=
<
=
(@)
=
=
w
o
Qo
il
p-g
s
0
S
@]
=
=
=
=
s
()
wn
m
=
m
r

4 /44

STL: The Crisis

Andrei Alexandrescu: "lterators Must Go" (2009), Video here

TL;DR:

STL was built using a rigorous fundamental, academic, generic approach, but
= |eads to counter-intuitive rules in some places
= s hard to learn (and hard to remember)
Working with data streams is a mess.
Algorithms are NOT composable.
Iterators
= are so complex, one needs 10 years of education and/or
= |ibrary help like Boost.Iterator in order to get things right.

5/44

https://accu.org/content/conf2009/AndreiAlexandrescu_iterators-must-go.pdf
https://archive.org/details/AndreiAlexandrescuKeynoteBoostcon2009
https://www.boost.org/doc/libs/1_67_0/libs/iterator/doc/index.html

Ranges

= Many attempts/proposals, e.g.
= Boost.Range Version 1 and 2
= Eric Niebler: 3 (!) versions
= Rest of the talk deliberately ignores all other attempts,
= shows application of Eric Niebler's ranges-v3 for C++11/14/17

6/44

https://www.boost.org/doc/libs/1_67_0/libs/range/doc/html/index.html
https://github.com/ericniebler/range-v3

Eric Nieblers Range-v3

= GitHub Repository at https://github.com/ericniebler/range-v3
= |SO Standard Proposal

= https://ericniebler.github.io/std/wg21/D4128.html

= TS: https://www.iso.org/obp/ui/#iso:std:iso-iec:ts:21425:ed-1:v1:en

= http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4651.pdf
= Explanations about iterators and why we need a sentinel

= http://ericniebler.com/2015/02/03/iterators-plus-plus-part-1/

October 2014 December 2017

7/ 44

https://github.com/ericniebler/range-v3
https://ericniebler.github.io/std/wg21/D4128.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:ts:21425:ed-1:v1:en
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4651.pdf
http://ericniebler.com/2015/02/03/iterators-plus-plus-part-1/

What are Ranges?

Eric Niebler @ericniebler - 7. Mai v

Antwort an @SeanParent @tvaneerd und 10 weitere

@

Containers are Ranges. A span is a Range and a View. But yeah, span is weird,
and I'm generally not a fan. At least it's better than it was....

The Committee is a tough place for strict adherents of logical consistency.

& Tweet Uibersetzen

Q 3 () Q 2 &

Sean Parent @SeanParent - 7. Mai v
By “span is a Range and a View" you of course mean it is neither, since
something cannot be both. | think this is an instance were we need user defined
reference types. i.e. ‘class span : public &'. It seems to be range&. (My use of

range was the "classic” term, now view).

& Tweet Uibersetzen

Q 2 () Q 2 & 8/ 44

What are Ranges?

Eric Niebler @ericniebler - 7. Mali v
"Range"” is just something that you can pass to begin and end. So yes, | mean
span is a Range and a View, because all Views are Ranges. But Views are not

G

Containers.

(The terminology changed. "Range" used to be spelled "lterable".)

& Tweet Ubersetzen

O 1 n Q 3 ™

Eric Niebler @ericniebler - 7. Mali v
The algorithms are constrained with "Range". They only care that they can call
begin and end and pass the results to an algorithm that accepts iterators.

& Tweet Ubersetzen

O 1 (W) Q 1 ™M

9/44

What are Ranges?

10/44

What are Ranges?

(V)/ _(V)_/ _(V)_/ _(V)_/ _()_/
(V)/ _(V)_/ _(V)_/ _(V)_/ _()_/
()/ _(V)_/ _(V)_/ _(V)_/ _()_/
(V)/ _(V)_/ _(V)_/ _(V)_/ _()_/

()/ _(V)_/ _(V)_/ _()_/ _()_/

11744

What are Ranges?

C++ Ranges are C#'s LINQ for C++ - Markus Werle

C# is a language | struggled with may times because of its unnecessary limitations due to bad
language design (esp. generics are multiple inheritance) and its limited expressiveness, but

(# got some things right (++ gotta catch up
= Lambdas = C++17's generic lambdas ¢’
= Concurrency esp. async/await (see Steven = std::async flawed, but concurrency will
Toub's Concurrency in C# Cookbook) and evolve (I see a bright <future> here, with
CancellationToken coroutines and more confusion)
= LINQ (*this talk) = Ranges converge soon into ISO C++ ¢’

Reactive Extensions (*this->next () talk)

RxCpp will converge during the next years
12 /44

https://www.amazon.com/Concurrency-Cookbook-Asynchronous-Multithreaded-Programming/dp/1449367569

What are Ranges?

C++ Ranges are Pure Monadic Goodness - Bartosz Milewski

= Functional Programming curiously recurring all the time
= Milewski: A monad is an applicative functor with an additional ability, which can be expressed
either as a way of flattening a doubly encapsulated object, or as a way of applying a functor
factory to an encapsulated object.
= Simply said, it's all about
= functions/algorithms (operations on values or sets of values)

= composition of functions
= programming without side effects (helps a lot when dealing with concurrency)

13/44

https://bartoszmilewski.com/2014/10/17/c-ranges-are-pure-monadic-goodness/

What are Ranges?

Ranges are a contribution to making C++ easier to write and reason about

14 /44

STL vs. Ranges: Transform (LINQ: Select, J*: Map)

STL Approach Ranges Approach
typedef /* ... ? ... */ result_t;
// bar is lazy and composable
<result_t> bar; auto bar =
::transform (
: :begin(foo), foo | view::transform(
::end(foo),
: :back_inserter(bar),
[J(auto const v) { [J(auto const v) {
return 2 * v; return 2 * v;
}); });

15/44

STL vs. Ranges: Composition

auto timesTwo = []J(auto const v) { return *v;, };

auto plusTen = [](auto const v) { return v + v}
STL Approach Ranges Approach
auto composition = [](auto v) { // Remember: lazy,
return plusTen(timesTwo(V)); // i.e. optimizer looks through
}); auto bar =
foo

::transform (
: :begin(foo),
::end(foo),
: :back_inserter(bar),
composition);

| view::transform(timesTwo)
| view::transform(plusTen)

I

16 /44

STL vs. Ranges: Composition

auto timesTwo = []J(auto const v) { return *v;, });

auto plusTen = [](auto const v) { return v + v}
STL Approach Ranges Approach (Composition to the Max)
auto composition = [](auto v) { // Remember: lazy,

return plusTen(timesTwo(V)); // i.e. optimizer looks through
}); auto bar =

foo | view::transform(timesTwo);
: :transform (

: :begin(foo), auto baz =
: :end(foo), bar | view::transform(plusTen);
: :back_inserter(bar),

composition);
17744

Switching back to STL

Explicit Implicit
auto bar = s <result_t> bar =
foo | view::transform(timesTwo) foo | view::transform(timesTwo)
| to_vector .
auto bar = . <result_t> bar =
/* ... * / /* ... * /
| to_<std::list>(); ’
auto bar = - <long> bar =
/* ... * / /* ... * /

to_<std: :vector<long>>(); '
| to- &> 18/ 44

Switching back to STL with Optimal Runtime Performance

Citation from Casey Carter's Answer on Stack Overflow:
auto b = a | ranges::view: :transform(complexFun) | ranges::to_vector;
If you already have a destination vector whose capacity you want to reuse:

b.clear();
b |= ranges::action: :push_back(a | ranges::view: :transform(complexFun));

In both cases, range-v3 is smart enough to reserve capacity in the destination vector for
ranges::size(a | ranges::view::transform(complexFun)) elements to avoid copies
due to reallocation.

19/44

https://stackoverflow.com/questions/47831026/replacing-data-with-range-v3

Dual Interface: Chainable Pipe Operator vs. Regular Function Call

For most algorithms there exist two ranges-v3 interfaces:

auto bar = foo auto bar =
| view::transform(fn); transform(foo, fn);

Some algorithms are not available in the pipe (|) form:

// std::.copy(std::begin(v), std::end(v),

// std::ostream_iterator<int>(std::cout, ' '));
ranges: :copy(v, ranges::ostream_iterator<int>(- v o)),
// or (assuming using namespace ranges;)
Sl << view: :transform(vs, view::all) << Sl ;
// or TODO: testen!
<< vs | view::transform(view::all) << Dl ;

20/ 44

Group_By (LINQ: GroupBy) and Join (LINQ: SelectMany)

struct Person {

firstname;
s surname;
int year;
}i
::ostream & operator<<(::ostream & os, Person const & person) {
0S << person.surname << ",6 " << person.firstname
<< " was born in " << person.year;
return os;
}
<Person> people{
{ "Jared", "Kushner", }, { "Melania", "Trump", },
{ "Donald", "Trump", Y, { "Ivana"™, "Trump", },

i 21/ 44

Group_By (LINQ: GroupBy)

auto surname_is_equal = []J(auto const & p1, auto const & p2)
{ return p1.surname == p2.surname,; };

auto groups = people | ranges::view::group_by(surname_is_equal);

for (auto const & group : groups) {

copy(group, ostream_iterator<Person>(e , "A\n"));

Trump, Melania was born in
Trump, Donald was born in
Trump, Ivana was born in 25 1 44

Join (LINQ: SelectMany)

auto is_younger = [](auto const & p1, auto const & p2)
{ return p2.year < pl.year; },;

auto each_group_sorted_by_age = groups
| transform([=](auto g) {
sort(g, is_younger); // range-v3/issues/266: no view::sorted

return /* expensive copy of */ g; });

copy(join(each_group_sorted_by_age),
ostream_iterator<Person>(std:: , "\n"));

--> sorted by age, then joined:

Kushner, Jared was born in

Trump, Melania was born in

Trump, Ivana was born in

Trump, Donald was born in 3/ 44

Filtering - By Hand Using Yield_If (C#: Yield)

std::vector<int> numbers{1, 2, 3, 4, 5, 6};
auto is_odd = [](int 1) { return 1 % 2 != 0; };

using ranges::view: :for_each;
using ranges::yield_if;

// odd_numbers is a *lazy* expression, i.e. is_odd
// will NOT be called in next statement
auto odd_numbers = for_each(numbers, [=](int 1) {
return yield_if(is_odd(i), 1i);
});

// now that the expression gets evaluated, is_odd will be called
REQUIRE(ranges: :equal(odd_numbers, std::vector<int>{1, 3, 5}));

24 /44

Filtering with Filter and Remove_If (LINQ: Where)

<int> numbers{1, 2, 3, 4, 5, 6};

using ranges::view: :filter; // ambiguous, but meant positive.
using ranges::view: :remove_if;
using ranges::not_fn;

auto is_odd = [](int 1) { return 1 % 1= 0; };

auto odd_numbers = numbers | filter (is_odd);
auto odd_numbers_alt = numbers | remove_if (not_fn(is_odd));
auto even_numbers = numbers | remove_if (is_odd);

25/ 44

Set Operations

Unique (LINQ: Distinct)

Removes duplicate values from a collection. In most libraries, finding duplicates requires a sorted
container/enumerable.

<int> numberS{ ’ 7 7 7 7 7 7 7 };

using ranges::action: :unique;
using ranges::action::sort;

numbers |= sort | unique;

20/ 44

Set Operations

Set Difference (LINQ: Except)

Returns the set difference, which means the elements of one collection that do not appear in a
second collection.

<int> V1{ ’ ’ ’ };
<int> v2{3, 4, 5};

using ranges::view: :set_difference;
auto v = set_difference(v1l, v2);

using ranges::equal;
REQUIRE(equal(v, s <int>{1, 2}));

27144

Set Operations

Symmetric Set Difference

The symmetric difference finds the elements that are found in either of the ranges, but not in
both of them

<int> V1{ ’ ’ ’ };
<int> v2{3, 4, 5};

using ranges::view::set_symmetric_difference;
auto v = set_symmetric_difference(v1l, v2);

using ranges::equal;
REQUIRE(equal(v, s <int>{1, 2, 5}));

28 /44

Set Operations

Set Intersection (LINQ: Intersect)

Returns the set intersection, which means elements that appear in each of two collections.

<int> V1{ ’ ’ ’ };
<int> v2{3, 4, 5};

using ranges::view::set_intersection;
auto v = set_intersection(v1l, v2);

using ranges::equal;
REQUIRE(equal(v, s <int>{3, 4}));

29/ 44

Set Operations

Set Union (LINQ: Union)

Returns the set union, which means unique elements that appear in either of two collections.

<int> V1{ ’ ’ ’ };
<int> v2{3, 4, 5};

using ranges::view::set_union;
auto v = set_union(v1, v2);

using ranges::equal;

REQUIRE(equal(v, s <int>{

}));

30/44

Partitioning

= skip
= skip_while
= take
= take_while

31/44

Generating Sequences

= empty
= range of numbers
= repeat

32/44

Accessing elements

= gt

m first

= first or default
= [ast

= |ast or default
= single

33/44

: <PolarCoordinate>
selectNearestSegmentToAngleZero(
s < s <PolarCoordinate>> const& segments)
{
// ... using declaratives omitted ...
auto average_angle = [](auto&& coordinates) {
auto angles = coordinates
| transform([](auto pc) { return pc.angle; });
auto sumOfAngles = accumulate(angles,);
auto result = sumOfAngles
/ static_cast<double>(size(coordinates));
return result;
}i
auto averageValuesAbs = segments
| transform(average_angle) // yields a range of average values
| transform([](auto v) { return s (v): });
auto index = distance(averageValuesAbs.begin(),
min_element (averageValuesAbs));

return segments[index]; 34 / 44

How | lost my reputation

: <std:: <PolarCoordinate>> segments;
auto segmentsReversedViaNestedTransform = segments
| transform([](auto s) {
return s | transform(polarToCartesian) | reverse;

});

<PolarCoordinate> firstSegmentReversed =
segments[0] | transform(polarToCartesian) | reverse;

for (auto const& point : firstSegmentReversed) {
<< point.first << ", " << point.second << sl ;

}

for (auto const& point : *begin(segmentsReversedViaNestedTransform)) {
<< point.first << ", " << point.second << sl ;

}
35/ 44

How | lost my reputation

<std:: <PolarCoordinate>> segments;
<PolarCoordinate> firstSegmentReversed =
segments[0] | transform(polarToCartesian) | reverse;

for (auto const& point : firstSegmentReversed) {
<< point.first << ", " << point.second << sl ;

}

yields

36 /44

How | lost my reputation

auto segmentsReversedViaNestedTransform = segments
| transform([](auto s) {
return s | transform(polarToCartesian) | reverse; });

for (auto const& point : *begin(segmentsReversedViaNestedTransform)) {
<< point.first << ", " << point.second << - ;

}

yields

, <mmmmm- HERE IS SOMETHING WRONG
37 /44

How | lost my reputation

: <std:: <PolarCoordinate>> segments;
auto segmentsInCartesianCoordinates = segments

| transform([](auto s) {
return s | transform(polarToCartesian) | reverse;

});
Explanation by @gnzlbg:

[1(auto s) { return s | reverse; } creates adangling view. The inner vector will be
copied into the s argument (the lambda stack frame), and | reverse creates a view (thatis, a
pair of pointers) into this local vector. The problem is that this vector will be destroyed on
scope exit (freeing the memory), so when the view is returned its pair of pointers into the
vector will point into freed memory. When you try to iterate the view, you are basically
dereferencing these pointers, and that is undefined behavior: read after free.
38/44

https://github.com/gnzlbg

How | lost my reputation

: <std:: <PolarCoordinate>> segments;
auto segmentsInCartesianCoordinates = segments
| transform([](auto&& s) {
return s | transform(polarToCartesian) | reverse;

});

39/44

Dangling References due to Views

auto doub = [](int i) -> int { return *1i; };

int main {
auto e = find_if(view::ints(1) | view::transform(doub), is_six);
<< "find-six: " << *e,get_unsafe() << ;

}

Prefer this version:

auto doub = [](int i) -> int { return *i; };

int main {
auto candidates = view::ints(1) | view::transform(doub);
auto e = find_if(candidates, is_six);
<< "find-six: " << *e << ;
} 40 / 44

Maps
Extract the values from a dictionary

: :map<int, r:wstring> ss =
{ {1, L7117},

{ 'LIIZII}'

{3,L"3"} };

auto rng = ss | ranges::view::reverse | ranges::view::values;

41744

Some More Tips and Tricks

Compare ranges (see this code live on Wandbox):

int main {
ranges::view: :iota;
ranges::view: :reverse;

: <int> vec{5,4,3,2,1,0};
assert(ranges: :equal(
vec,

ints(0, 6) | reverse));

42 /44

https://wandbox.org/permlink/drelV5N7D53atok6

Thank You for Your Attention

(and welcome to modern C++)

43 /44

Gimme that 0ld Time Religion (2)

Scott Meyer's perfect version of a map search and update

Effective STL

typename MapType::iterator 1lb = 50 Specific Ways to Improve
. Your Use of the Standard
m.lowe r_b0und (k) ’ Template Library

Scott Meyers

if (1b = m.end() &&
I(m.key_comp()(k, 1lb->first))) {
lb->second = v;
return 1b;

>
Q
g
@
@
7
=
m
w
2
m
&
=
C.
s
m
w
%]
@)
Z
>
s
ey
Q
=z
=
=
=
o
(@)
w
m
=
m
n

}

else {
typedef typename MapType::value_type MVT;
return m.insert(lb, MVT(k, Vv));

}

44 | 44

